Cryptography Secure against Related-Key Attacks and Tampering
نویسندگان
چکیده
We show how to leverage the RKA (Related-Key Attack) security of blockciphers to provide RKA security for a suite of high-level primitives. This motivates a more general theoretical question, namely, when is it possible to transfer RKA security from a primitive P1 to a primitive P2? We provide both positive and negative answers. What emerges is a broad and high level picture of the way achievability of RKA security varies across primitives, showing, in particular, that some primitives resist “more” RKAs than others. A technical challenge was to achieve RKA security even for the practical classes of related-key deriving (RKD) functions underlying fault injection attacks that fail to satisfy the “claw-freeness” assumption made in previous works. We surmount this barrier for the first time based on the construction of PRGs that are not only RKA secure but satisfy a new notion of identity-collision-resistance.
منابع مشابه
Cryptography with Tamperable and Leaky Memory
A large and growing body of research has sought to secure cryptographic systems against physical attacks. Motivated by a large variety of real-world physical attacks on memory, an important line of work was initiated by Akavia, Goldwasser, and Vaikuntanathan [1] where security is sought under the assumptions that: (1) all memory is leaky, and (2) leakage can be an arbitrarily chosen (efficient)...
متن کاملOn the Security of the Schnorr Signature Scheme and DSA Against Related-Key Attacks
In the ordinary security model for signature schemes, we consider an adversary that may forge a signature on a new message using only his knowledge of other valid message and signature pairs. To take into account side channel attacks such as tampering or fault-injection attacks, Bellare and Kohno (Eurocrypt 2003) formalized related-key attacks (RKA), where stronger adversaries are considered. I...
متن کاملA new security proof for FMNV continuous non-malleable encoding scheme
A non-malleable code is a variant of an encoding scheme which is resilient to tampering attacks. The main idea behind non-malleable coding is that the adversary should not be able to obtain any valuable information about the message. Non-malleable codes are used in tamper-resilient cryptography and protecting memories against tampering attacks. Many different types of non-malleability have alre...
متن کاملPublic-Key Cryptosystems Resilient to Continuous Tampering and Leakage of Arbitrary Functions
We present the first chosen-ciphertext secure public-key encryption schemes resilient to continuous tampering of arbitrary (efficiently computable) functions. Since it is impossible to realize such a scheme without a self-destruction or key-updating mechanism, our proposals allow for either of them. As in the previous works resilient to this type of tampering attacks, our schemes also tolerate ...
متن کاملAn efficient certificateless signcryption scheme in the standard model
Certificateless public key cryptography (CL-PKC) is a useful method in order to solve the problems of traditional public key infrastructure (i.e., large amount of computation, storage and communication costs for managing certificates) and ID-based public key cryptography (i.e., key escrow problem), simultaneously. A signcryption scheme is an important primitive in cryptographic protocols which ...
متن کاملTamper Resilient Cryptography Without Self-Destruct
We initiate a general study of schemes resilient to both tampering and leakage attacks. Tampering attacks are powerful cryptanalytic attacks where an adversary can change the secret state and observes the effect of such changes at the output. Our contributions are outlined below: 1. We propose a general construction showing that any cryptographic primitive where the secret key can be chosen as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2011 شماره
صفحات -
تاریخ انتشار 2011